Disruption of the metallothionein-III gene in mice: analysis of brain zinc, behavior, and neuron vulnerability to metals, aging, and seizures.

نویسندگان

  • J C Erickson
  • G Hollopeter
  • S A Thomas
  • G J Froelick
  • R D Palmiter
چکیده

Metallothionein-III (MT-III), a brain-specific member of the metallothionein family of metal-binding proteins, is abundant in glutamatergic neurons that release zinc from their synaptic terminals, such as hippocampal pyramidal neurons and dentate granule cells. MT-III may be an important regulator of zinc in the nervous system, and its absence has been implicated in the development of Alzheimer's disease. However, the roles of MT-III in brain physiology and pathophysiology have not been elucidated. Mice lacking MT-III because of targeted gene inactivation were generated to evaluate the neurobiological significance of MT-III. MT-III-deficient mice had decreased concentrations of zinc in several brain regions, including hippocampus, but the pool of histochemically reactive zinc was not disturbed. Mutant mice exhibited normal spatial learning in the Morris water maze and were not sensitive to systemic zinc or cadmium exposure. No neuropathology or behavioral deficits were detected in 2-year-old MT-III-deficient mice, but the age-related increase in glial fibrillary acidic protein expression was more pronounced in mutant brain. MT-III-deficient mice were more susceptible to seizures induced by kainic acid and subsequently exhibited greater neuron injury in the CA3 field of hippocampus. Conversely, transgenic mice containing elevated levels of MT-III were more resistant to CA3 neuron injury induced by seizures. These observations suggest a potential role for MT-III in zinc regulation during neural stimulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global gene expression analysis using microarray to study differential vulnerability to neurodegeneration

Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...

متن کامل

Global gene expression analysis using microarray to study differential vulnerability to neurodegeneration

Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...

متن کامل

The functional significance of brain metallothioneins.

Metallothioneins (MTs) are ubiquitous low molecular weight proteins characterized by their abundant content of cysteines. Two MT isoforms, MT-I and MT-II, are expressed coordinately in all mammalian tissues. In the CNS, MT-I and MT-II are conspicuously absent from neuronal populations, yet abundant in fibrous and protoplasmic astrocytes. A newly identified brain-specific MT gene, MT-III, is pre...

متن کامل

Identification of metallothionein gene structure in sterlet (Acipenser ruthenus)

Aquatic organisms present, not only simple sources of accumulated metal, but can interact with metals, altering their toxicity. Due to exposition of biosphere with metals, organisms have developed various defense mechanisms to protect themselves against adverse effects of these ions and their compounds. Metallothionein (MT) is one of that which represents a critical mechanism for detoxification...

متن کامل

Identification of metallothionein gene structure in sterlet (Acipenser ruthenus)

Aquatic organisms present, not only simple sources of accumulated metal, but can interact with metals, altering their toxicity. Due to exposition of biosphere with metals, organisms have developed various defense mechanisms to protect themselves against adverse effects of these ions and their compounds. Metallothionein (MT) is one of that which represents a critical mechanism for detoxification...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 4  شماره 

صفحات  -

تاریخ انتشار 1997